Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Lab Chip ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619815

RESUMO

Non-spherical flagellate algae play an increasingly significant role in handling problematic issues as versatile biological micro/nanorobots and resources of valuable bioproducts. However, the commensalism of flagellate algae with distinct structures and constituents causes considerable difficulties in their further biological utilization. Therefore, it is imperative to develop a novel method to realize high-efficiency selection of non-spherical flagellate algae in a non-invasive manner. Enthused by these, we proposed a novel method to accomplish the selection of flagellate algae based on the numerical and experimental investigation of dielectrophoretic characterizations of flagellate algae. Firstly, an arbitrary Lagrangian-Eulerian method was utilized to study the electro-orientation and dielectrophoretic assembly process of spindle-shaped and ellipsoid-shaped cells in a uniform electric field. Secondly, we studied the equilibrium state of spherical, ellipsoid-shaped, and spindle-shaped cells under positive DEP forces actuated by right-angle bipolar electrodes. Thirdly, we investigated the dielectrophoretic assembly and escape processes of the non-spherical flagellate algae in continuous flow to explore their influences on the selection. Fourthly, freshwater flagellate algae (Euglena, H. pluvialis, and C. reinhardtii) and marine ones (Euglena, Dunaliella salina, and Platymonas) were separated to validate the feasibility and adaptability of this method. Finally, this approach was engineered in the selection of Euglena cells with high viability and motility. This method presents immense prospects in the selection of pure non-spherical flagellate algae with high motility for chronic wound healing, bio-micromotor construction, and decontamination with advantages of no sheath, strong reliability, and shape-insensitivity.

2.
Lab Chip ; 24(7): 2058-2068, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38436397

RESUMO

Marine microalgae play an increasingly significant role in addressing the issues of environmental monitoring and disease treatment, making the analysis of marine microalgae at the single-cell level an essential technique. For this, we put forward accurate and fast microfluidic impedance cytometry to analyze microalgal cells by assembling two cylindrical electrodes and microchannels to form a three-dimensional detection zone. Firstly, we established a mathematical model of microalgal cell detection based on Maxwell's mixture theory and numerically investigated the effects of the electrode gap, microalgal positions, and ion concentrations of the solution on detection to optimize detection conditions. Secondly, 80 µm stainless steel wires were used to construct flat-ended cylindrical electrodes and were then inserted into two collinear channels fabricated using standard photolithography techniques to form a spatially uniform electric field to promote the detection throughput and sensitivity. Thirdly, based on the validation of this method, we measured the impedance of living Euglena and Haematococcus pluvialis to study parametric influences, including ion concentration, cell density and electrode gap. The throughput of this method was also investigated, which reached 1800 cells per s in the detection of Haematococcus pluvialis. Fourthly, we analyzed live and dead Euglena to prove the ability of this method to detect the physiological status of cells and obtained impedances of 124.3 Ω and 31.0 Ω with proportions of 15.9% and 84.1%, respectively. Finally, this method was engineered for the analysis of marine microalgae, measuring living Euglena with an impedance of 159.61 Ω accounting for 3.9%, dead Euglena with an impedance of 36.43 Ω accounting for 10.1% and Oocystis sp. with an impedance of 55.00 Ω accounting for about 81.0%. This method could provide a reliable tool to analyze marine microalgae for monitoring the marine environment and treatment of diseases owing to its outstanding advantages of low cost, high throughput and high corrosion resistance.


Assuntos
Clorofíceas , Microalgas , Microfluídica , Impedância Elétrica , Eletrodos
3.
ACS Infect Dis ; 10(2): 662-675, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38294410

RESUMO

The Enterobacter cloacae complex (ECC) is a group of nosocomial pathogens that pose a challenge in clinical treatment due to its intrinsic resistance and the ability to rapidly acquire resistance. Colistin was reconsidered as a last-resort antibiotic for combating multidrug-resistant ECC. However, the persistent emergence of colistin-resistant (COL-R) pathogens impedes its clinical efficacy, and novel treatment options are urgently needed. We propose that azomycin, in combination with colistin, restores the susceptibility of COL-R ECC to colistin in vivo and in vitro. Results from the checkerboard susceptibility, time-killing, and live/dead bacterial cell viability tests showed strong synergistic antibacterial activity in vitro. Animal infection models suggested that azomycin-colistin enhanced the survival rate of infected Galleria mellonella and reduced the bacterial load in the thighs of infected mice, highlighting its superior in vivo synergistic antibacterial activity. Crystal violet staining and scanning electron microscopy unveiled the in vitro synergistic antibiofilm effects of azomycin-colistin. The safety of azomycin and azomycin-colistin at experimental concentrations was confirmed through cytotoxicity tests and an erythrocyte hemolysis test. Azomycin-colistin stimulated the production of reactive oxygen species in COL-R ECC and inhibited the PhoPQ two-component system to combat bacterial growth. Thus, azomycin is feasible as a colistin adjuvant against COL-R ECC infection.


Assuntos
Colistina , Nitroimidazóis , Animais , Camundongos , Colistina/farmacologia , Enterobacter cloacae , Antibacterianos/farmacologia
4.
EBioMedicine ; 95: 104749, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549631

RESUMO

BACKGROUND: There are sex-specific differences in the prevalence, symptomology and course of psychiatric disorders. However, preclinical models have primarily used males, such that the molecular mechanisms underlying sex-specific differences in psychiatric disorders are not well established. METHODS: In this study, we compared transcriptome-wide gene expression profiles in male and female rats within the corticolimbic system, including the cingulate cortex, nucleus accumbens medial shell (NAcS), ventral dentate gyrus and the basolateral amygdala (n = 22-24 per group/region). FINDINGS: We found over 3000 differentially expressed genes (DEGs) in the NAcS between males and females. Of these DEGs in the NAcS, 303 showed sex-dependent conservation DEGs in humans and were significantly enriched for gene ontology terms related to blood vessel morphogenesis and regulation of cell migration. Single nuclei RNA sequencing in the NAcS of male and female rats identified widespread sex-dependent expression, with genes upregulated in females showing a notable enrichment for synaptic function. Female upregulated genes in astrocytes, Drd3+MSNs and oligodendrocyte were also enriched in several psychiatric genome-wide association studies (GWAS). INTERPRETATION: Our data provide comprehensive evidence of sex- and cell-specific molecular profiles in the NAcS. Importantly these differences associate with anxiety, bipolar disorder, schizophrenia, and cross-disorder, suggesting an intrinsic molecular basis for sex-based differences in psychiatric disorders that strongly implicates the NAcS. FUNDING: This work was supported by funding from the Hope for Depression Research Foundation (MJM).


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Mentais , Humanos , Masculino , Feminino , Ratos , Animais , Encéfalo/metabolismo , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transcriptoma , Análise de Sequência de RNA
5.
Anal Methods ; 15(35): 4485-4493, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37610139

RESUMO

Dielectrophoretic (DEP) separation has been recognized as a practical tool in the separation of cells and particles for clinical diagnosis, the pharmaceutical industry and environmental monitoring. Assembly of particles and cells under DEP force is a common phenomenon and has an influence on their separation but has not been understood fully. Encouraged by these aspects, we developed a microfluidic device with a bipolar electrode array to investigate the assembly and separation of particles and cells at a large scale. First, we studied the assembly and evolution mechanisms of particles of one type under an AC electric field. Then, we investigated the interaction and assembly of multiple particles with dissimilar properties under DEP force. Depending on the development of microfluidic devices, we visualize the assembly process of yeast cells at the electrode rims and of polystyrene particles at the channel centers, and explore the influence of pearl chain formation on their separation. With increasing flow velocity from 288 to 720 µL h-1, the purity of 5 µm polystyrene particles surpasses 94.9%. Furthermore, we studied the DEP response of Scenedesmus sp. and C. vulgaris, and explored the influence of cell chains on the isolation of C. vulgaris. The purity of Scenedesmus sp. and C. vulgaris witnessed a decrease from 95.7% to 90.8% when the flow rate increased from 288 to 864 µL h-1. Finally, we investigated the extension of the electric field under chains of Oocystis sp. at the electrode rims by studying chain formation and capture of C. vulgaris, and studied its effect on cell chain length, recovered cell purity and cell concentration. When chains of Oocystis sp. were formed, the purity of C. vulgaris kept unchanged and the concentration decreased from 2793 cells per µL to 2039 cells per µL. This work demonstrates continuous DEP-based assembly and separation of particles and cells, which facilitates high-efficiency isolation of targeted cells.


Assuntos
Poliestirenos , Scenedesmus , Indústria Farmacêutica , Eletricidade , Eletrodos , Monitoramento Ambiental , Saccharomyces cerevisiae
6.
Lung Cancer ; 184: 107346, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37604026

RESUMO

BACKGROUND: Third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) show good selectivity for classical EGFR mutated and EGFR T790M mutated non-small cell lung cancer (NSCLC). However, resistance inevitably occurs to third-generation EGFR-TKI. This study describes the real-world characteristics, efficacy, and safety of treating post-progression NSCLC with 160 mg of furmonertinib (in combination with or without anti-angiogenic agents and chemotherapy) with third-generation EGFR-TKIs. METHODS: EGFR-mutated NSCLC patients with intracranial progression pattern cohort (IP cohort) or extracranial progression pattern cohort (EP cohort) were retrospectively analyzed following progression to third-generation EGFR-TKIs receiving furmonertinib 160 mg daily as second-line or later treatment in combination with or without anti-angiogenic agents and chemotherapy. RESULTS: Thirty-nine patients were included and categorized into two groups according to the progression pattern. Then, 22 patients in the IP cohort and 17 patients in the EP cohort, most of whom were in poor physical condition, were included and 84.6% had central nervous system metastases. In the IP cohort, the median PFS was 5.5 months (95% CI 4.67-8.72), and the median OS was 9.8 months (95% CI 7.25-11.20) for single-agent furmonertinib or combination therapy. In the EP cohort, the median PFS was 3.2 months (95% CI 2.18-4.70), and the median OS was 6.7 months (95% CI 4.99-8.75). Univariate analysis showed the association between the presence of a prior T790M mutation and a history of combined radiotherapy with longer PFS with furmonertinib (p = 0.048, p = 0.004). Overall, adverse events (AEs) of any grade occurred in 84.6% of patients (33/39), with the majority having grade 2 or lower AEs. CONCLUSION: Furmonertinib 160 mg is an optional regimen for patients with advanced NSCLC who develop resistance after treatment with third-generation EGFR-TKIs, especially those developing resistance due to the progression of intracranial lesions, with good efficacy and an acceptable safety profile that warrants further exploration.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Estudos Retrospectivos , Inibidores da Angiogênese
7.
Anal Chem ; 95(31): 11714-11722, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486806

RESUMO

Manipulation of micro- and nanoscale objects is an essential procedure in many detection and sensing applications, including disease diagnosis and environmental monitoring. Induced-charge electro-osmotic (ICEO) vortices present excellent advantages in the enrichment and selection of micro/nanoscale particles for downstream detection due to gentle conditions and contactless operation, but the application of this method is currently constrained by the throughput. Double-layer charging at the ends of bipolar electrodes can maintain a continuous flow of electric current in the fluidically isolated channels, which provides a feasible method to manipulate particles using parallel ICEO vortices, promoting throughput of particle manipulation without compromising efficiency and overcoming the complicated ohmic contact of electrodes. Encouraged by these, we put forward a novel method with parallel ICEO vortices to manipulate micro/nanoscale samples for downstream detection. First, we study the extension regulation of the low-frequency electric field and mediating effect of the open BPEs on the extended electric field and characterize electric equilibrium states of microparticles and their voltage dependence. Afterward, we leverage this method to enrich nanoparticles for detection of low-abundance nanoparticles with about 20- and 40-fold fluorescence intensities by integrating with a simple fiber-optic sensor. Furthermore, this technique is engineered for the selection of targeted microalgae to continuously detect their proliferation behaviors by combining with a homemade electrical impedance spectroscopy device. This method can reinforce the throughput of ICEO vortices and enables it to integrate with simple and economical sensors to accomplish disease diagnosis and environmental monitoring.


Assuntos
Microalgas , Nanopartículas , Nanopartículas/química , Eletrodos , Eletricidade , Tecnologia de Fibra Óptica
8.
J Mater Chem B ; 11(34): 8159-8169, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37313622

RESUMO

Because of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform. The biocompatible, soft, laterally fluidic, and antifouling properties of the LIPO-SLB platform offer high CTC capture efficiency, viability, and selectivity. We successfully demonstrated the capability of the LIPO-SLB platform to recapitulate different cancer cell lines with different antigen expression levels. In addition, the captured CTCs in the LIPO-SLB platform can be detached by air foam to destabilize the physically assembled bilayer structures due to a large water/air interfacial area and strong surface tension. More importantly, the LIPO-SLB platform was constructed and used for the verification of clinical samples from 161 patients with different primary cancer types. The mean values of both single CTCs and CTC clusters correlated well with the cancer stages. Moreover, a considerable number of CTCs were isolated from patients' blood samples in the early/localized stages. The clinical validation demonstrated the enormous potential of the universal LIPO-SLB platform as a tool for prognostic and predictive purposes in precision medicine.


Assuntos
Bicamadas Lipídicas , Células Neoplásicas Circulantes , Humanos , Bicamadas Lipídicas/química , Lipossomos , Separação Celular , Células Neoplásicas Circulantes/patologia , Microfluídica
9.
mSphere ; 8(3): e0054922, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37017551

RESUMO

Multidrug-resistant bacteria pose a tremendous challenge to public health worldwide. Many bacteria resistant to last-resort antibiotics due to antibiotic misuse have been recently reported, which may give rise to serious infections without effective treatment. Therefore, it is imperative to develop novel antimicrobial strategies. Natural phenols are known to increase bacterial membrane permeability and are potential candidates for the development of new antimicrobial agents. In this study, gold nanoparticles (Au NPs) carrying natural phenols were synthesized to combat bacteria resistant to last-resort antibiotics. Transmission electron microscopy, dynamic light scattering, zeta potential, and UV-visible spectra were used to characterize the synthesized Au NPs, which showed good monodispersity and uniform particle size. Evaluation of antibacterial activity using the broth microdilution method revealed that thymol-decorated gold nanoparticles (Thymol_Au NPs) had a broad antibacterial spectrum and higher bactericidal effects than last-resort antibiotics against last-resort-antibiotic-resistant bacteria. Considering the underlying antibacterial mechanism, the results showed that Thymol_Au NPs destroyed bacterial cell membranes. Further, Thymol_Au NPs were effective in treating mouse abdominal infections and exhibited acceptable biocompatibility without any significant toxicity in cell viability and histopathological assays, respectively, at most bactericidal concentrations. However, attention should be paid to changes in white blood cells, reticulocyte percentages, and superoxide dismutase activity during Thymol_Au NP treatment. In conclusion, Thymol_Au NPs have the potential for treating clinical infections caused by bacteria resistant to last-resort antibiotics. IMPORTANCE Excessive use of antibiotics can lead to bacterial resistance and the development of multidrug-resistant bacteria. Antibiotic misuse can also promote resistance against last-resort antibiotics. It is thus crucial to develop alternatives to antibiotics to retard the development of multidrug resistance. In recent years, the use of several nanodosage forms of antibacterial drugs has been investigated. These agents kill bacteria through a variety of mechanisms and avoid the problem of resistance. Among them, Au NPs, which are safer to use for medical applications than other metal nanoparticles, have attracted interest as potential antibacterial agents. To combat bacterial resistance to last-resort antibiotics and mitigate the problem of antimicrobial resistance, it is important and meaningful to develop antimicrobial agents based on Au NPs.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Doenças Transmissíveis , Nanopartículas Metálicas , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Timol/farmacologia , Timol/uso terapêutico , Ouro/farmacologia , Ouro/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Bactérias
10.
Int Immunopharmacol ; 116: 109748, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36753982

RESUMO

BACKGROUND: Tuberculosis (TB) remains one of the most serious infectious diseases in the world. Our aim was to investigate the regulatory role of STAT3 and pSTAT3 in the regulation of T cell immunophenotype and cell function. METHODS: Twenty-five active pulmonary tuberculosis (APTB) patients, 18 latent tuberculosis infection (LTBI) patients, and 20 healthy controls (HCs) enrolled in this study. T cell phenotype and expression of STAT3 and pSTAT3 were detected by flow cytometry. RESULTS: Compared with HCs, the expression of pSTAT3 in CD4+ T and CD8+ T cells in peripheral blood of APTB patients was increased, and the expression was higher in pleural effusion. Multifunctional T cells that simultaneously secrete IFN-γ, TNF-α and IL-17A have higher pSTAT3 expression levels. Mtb-specific T cells from APTB patients had a higher cell frequency of the STAT3+ pSTAT3+ phenotype and a reduced cell frequency of the STAT3+ pSTAT3- phenotype compared with LTBI patients. Mtb-specific T cells with STAT3+ pSTAT3+ phenotype had higher expression of PD-1 and PD-L1, while cells with STAT3+ pSTAT3- phenotype had higher expression of Bcl-2. CONCLUSIONS: STAT3 and pSTAT3 in T cells of APTB patients feature in the process of anti-apoptosis and cytokine secretion. At the same time, the higher pSTAT3 may be related to the degree of cell functional exhaustion. The pSTAT3 level of T cells is related to the infection status and may indicate the clinical activity of the disease, which provides a new idea for the clinical identification and treatment of active pulmonary tuberculosis.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Fator de Transcrição STAT3
11.
J Antimicrob Chemother ; 78(2): 466-477, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36575476

RESUMO

BACKGROUND: Vancomycin and linezolid resistance among enterococci is an increasing problem due to a lack of alternative antibiotics. Early identification of vancomycin-resistant and linezolid-resistant strains can help prevent the spread of resistance to these antibiotics. Hence, early, rapid and accurate detection of vancomycin and linezolid resistance is critical. OBJECTIVES: The resazurin microplate method (RMM) was developed for detecting vancomycin and linezolid susceptibility among Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) clinical isolates, and its performance was further evaluated. METHODS: A total of 209 non-duplicate clinical isolates and three strains from the faeces of domestic animals, including 142 E. faecalis (71 linezolid non-susceptible and 71 linezolid susceptible) and 70 E. faecium (23 vancomycin non-susceptible, 23 vancomycin susceptible, 12 linezolid non-susceptible and 12 linezolid susceptible), were tested using RMM. RESULTS: The susceptibility of E. faecium to vancomycin was detected within 5 h, with high susceptibility (23/23) and specificity (23/23). The susceptibility of E. faecalis and E. faecium to linezolid was detected within 4 h, with specificities of 98.59% and 100% and susceptibilities of 94.37% and 58.33% for E. faecalis and E. faecium, respectively. CONCLUSIONS: RMM had a good positive predictive value for the detection of vancomycin-non-susceptible E. faecium and linezolid-non-susceptible E. faecalis. It thus has the potential to become an alternative method for the rapid screening of these resistant pathogens in clinical practice.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Vancomicina/farmacologia , Linezolida/farmacologia , Enterococcus faecalis , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Positivas/diagnóstico
12.
Front Microbiol ; 13: 997310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583040

RESUMO

The rise in infections caused by the hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is an emergent threat to public health. We assessed the effects of chlorogenic acid (CA), a natural phenolic compound, on antibacterial, antivirulence, and anti-quorum sensing (QS) of hv-CRKP. Five hv-CRKP were selected for antimicrobial susceptibility test and confirmed to carry virulence genes and carbapenem-resistant genes by polymerase chain reaction (PCR). Subsequently, a series of time-kill assay, determinations of protease activity and capsule content, biofilm-related experiment, scanning electron microscopy (SEM) and transmission electron microscope (TEM) observation, G. mellonella infection model, quantitative real-time PCR (qRT-PCR) of QS-related genes and biofilm formation genes, as well as AI-2 binding test were conduct to verify the effect of CA on hv-CRKP. Five CRKP strains showed varying degrees of resistance to antibacterial agents. All strains carried the bla KPC-2 gene, primarily carrying rmpA2, iucA, and peg-344. CA showed no effect on CRKP growth at the 1/2 minimum inhibitory concentration (MIC), 1/4 MIC, and 1/8 MIC, CA could reduce the production of extracellular protease and capsular polysaccharides, and improve the survival rate of larvae in Galleria mellonella (G. mellonella) infection model. By means of crystal violet staining and scanning electron microscopy experiments, we observed that CA can inhibit the formation of CRKP biofilm. On the quantitative real-time PCR analysis, the expression of the luxS, mrkA and wbbm genes in most CRKP strains appeared downregulated because of the CA treatment. Besides, CA significantly inhibited the effect of AI-2 activity of BB170. Our study suggests that CA can be an effective antimicrobial, antivirulent compound that can target QS in hv-CRKP infections, thus providing a new therapeutic direction for treating bacterial infections.

13.
Cell J ; 24(5): 245-254, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35717572

RESUMO

Objective: Circular RNAs (circRNAs) are identified as key modulators in cancer biology. Nonetheless, the role of circ_0006427 in non-small cell lung cancer (NSCLC) and its modulatory mechanism are undefined. This study aimed to investigate the potential function and mechanism of circ_0006427 in NSCLC. Materials and Methods: In this experimental study, circ_0006427, miR-346 and vestigial like family member 4 (VGLL4) mRNA expressions were analyzed in NSCLC tissues and cells, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Multiplication, migration and invasion of NSCLC cells were examined using the CCK-8 method and Transwell experiment, respectively. Dual-luciferase reporter gene experiments were conducted to identify the paring relationship between circ_0006427 and miR-346. Western blot was employed to determine expressions of VGLL4 and epithelial-mesenchymal transition (EMT) markers on protein levels. Immuno-histochemistry (IHC) method was adopted to assess VGLL4 protein expression in NSCLC tissues. Results: Circ_0006427 expression was down-regulated in NSCLC tissues and cells, and circ_0006427 suppressed multiplication, migration, invasion and EMT of NSCLC cells. miR-346 expression was upregulated in NSCLC tissues and cells, and miR-346 worked as a target of circ_0006427. VGLL4 was down-regulated in NSCLC tissues and cells, and knockdown of VGLL4 accelerated multiplication, migration, invasion and EMT of NSCLC cells. Circ_0006427 enhanced VGLL4 expression by competitively binding with miR-346. Conclusion: Circ_0006427/miR-346/VGLL4 axis regulated NSCLC progression.

14.
Immunol Lett ; 243: 61-68, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35189172

RESUMO

BACKGROUND: Septic shock is a great threat to human life. Our aim is to explore the immune status and dynamic changes of circulating cytotoxic cells in septic shock patients. METHODS: Forty-eight septic shock patients (9 non-survivors and 39 survivors) and 30 healthy controls (HCs) were enroled in our study. The function of cytotoxic cells was dynamically monitored by flow cytometry. RESULTS: The number of circulating CD8+ T and NK cells decreased significantly in septic shock patients, while the number of CD8+ T cells rose in survivors 5 days after admission. The frequency of HLA-DR+CD8+ T/ NK cells increased in both groups after admission but decreased in non-survivors on day 3. Moreover, the frequency of GrA+/GrB+/perforin+NK and GrB+CD8+ T cells decreased to varying degrees in both groups, and the frequency of GrB+/perforin+CD8+ T cells on the second day of non-survivors was significantly lower than that of survival patients. Besides, the frequency of CXCR3+CD8+ T/ NK cells was decreased in both groups and remained low in non-survivors, but remarkably increased in survivors after day 3. And the concentrations of cytokines IL-6, IL-10, TNF-α and IFN-γ were significantly increased in septic shock patients. CONCLUSIONS: Circulating CD8+ T and NK cells reduced but activation function was compensatory enhanced in septic shock patients. The frequency of GrB+/PFP+CD8+ T and CXCR3+CD8+ T/NK cells may predict the progression of septic shock patients 2-3 days after admission.


Assuntos
Linfócitos T CD8-Positivos , Choque Séptico , Humanos , Células Matadoras Naturais , Contagem de Linfócitos , Perforina
15.
Front Oncol ; 12: 1016869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591504

RESUMO

Rearrangements of the anaplastic lymphoma kinase (ALK) gene account for 5-6% in non-small cell lung cancer (NSCLC). ALK rearranged NSCLC is sensitive to ALK tyrosine kinase inhibitors (TKIs) but prone to drug resistance. Meanwhile, ALK rearranged NSCLC has poor response to single immunotherapy. Here we mainly describe the immune escape mechanisms of ALK mutated NSCLC and the role of related biomarkers. Additionally, we collate and evaluate preclinical and clinical studies of novel immune combination regimens, and describe the prospects and perspectives for the in vivo application of novel immune technologies in patients with ALK rearranged NSCLC.

16.
Neuropsychopharmacology ; 47(5): 987-999, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34848858

RESUMO

The multifactorial etiology of stress-related disorders necessitates a constant interrogation of the molecular convergences in preclinical models of stress that use disparate paradigms as stressors spanning from environmental challenges to genetic predisposition to hormonal signaling. Using RNA-sequencing, we investigated the genomic signatures in the ventral hippocampus common to mouse models of stress. Chronic oral corticosterone (CORT) induced increased anxiety- and depression-like behavior in wild-type male mice and male mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met, a variant associated with genetic susceptibility to stress. In a separate set of male mice, chronic social defeat stress (CSDS) led to a susceptible or a resilient population, whose proportion was dependent on housing conditions, namely standard housing or enriched environment. Rank-rank-hypergeometric overlap (RRHO), a threshold-free approach that ranks genes by their p value and effect size direction, was used to identify genes from a continuous gradient of significancy that were concordant across groups. In mice treated with CORT and in standard-housed susceptible mice, differentially expressed genes (DEGs) were concordant for gene networks involved in neurotransmission, cytoskeleton function, and vascularization. Weighted gene co-expression analysis generated 54 gene hub modules and revealed two modules in which both CORT and CSDS-induced enrichment in DEGs, whose function was concordant with the RRHO predictions, and correlated with behavioral resilience or susceptibility. These data showed transcriptional concordance across models in which the stress coping depends upon hormonal, environmental, or genetic factors revealing common genomic drivers that embody the multifaceted nature of stress-related disorders.


Assuntos
Corticosterona , Estresse Psicológico , Animais , Ansiedade/genética , Corticosterona/farmacologia , Suscetibilidade a Doenças , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/genética
17.
J Appl Microbiol ; 132(2): 1008-1017, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34464994

RESUMO

AIMS: Quorum sensing (QS) is the intercellular communication used by bacteria to regulate collective behaviour. QS regulates the production of virulence factors in many bacterial species and is considered to be an attractive target for reducing bacterial pathogenicity. Chlorogenic acid (CA) is abundant in vegetables, fruits, and traditional Chinese medicine, and has multiple activities. This study aimed to investigate the QS quenching activity of CA against clinically isolated multidrug-resistant Pseudomonas aeruginosa. METHODS AND RESULTS: The results showed that CA inhibited the mobility of bacteria, reduced the production of pyocyanin, and inhibited the activity of elastase. Furthermore, crystal violet staining and scanning electron microscope experiments showed that CA inhibited the formation of multidrug-resistant P. aeruginosa biofilm. CA at or below the concentration of 2560 µg/mL exerted negligible cytotoxicity to RAW264.7 cells. The study also examined the expression of QS-related genes, including lasI, lasR, rhlI, rhlR, pqsA, and pqsR in P. aeruginosa and found that the expression of these genes was down-regulated under CA treatment. CONCLUSIONS: The study showed that CA could be used as an anti-virulence factor for treating clinical P. aeruginosa infection. SIGNIFICANCE AND IMPACT OF STUDY: For the first time, this study took clinically isolated multidrug-resistant P. aeruginosa as the experimental object, and suggested that CA might be an effective antimicrobial compound targeting QS in treating P. aeruginosa infection, thus providing a new therapeutic direction for treating bacterial infection and effectively alleviating bacterial resistance.


Assuntos
Antibacterianos , Ácido Clorogênico , Pseudomonas aeruginosa , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes , Ácido Clorogênico/farmacologia , Camundongos , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum , Células RAW 264.7 , Fatores de Virulência/genética
18.
Infect Drug Resist ; 14: 4619-4627, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764658

RESUMO

BACKGROUND: The emergence and spread of linezolid-resistant Enterococcus faecalis (E. faecalis) have emerged as a serious threat to human health globally. Therefore, this study aims to compare the anti-microbic as well as the anti-biofilm activity of linezolid, tedizolid, and radezolid against linezolid-resistant E. faecalis. METHODS: A total of 2128 E. faecalis isolates were assessed from the First Affiliated Hospital of Wenzhou Medical University from 2011 to 2019. Antibiotic sensitivity was evaluated using the micro broth dilution method. Oxazolidinone-resistant chromosomal and plasmid-borne genes such as cfr, cfr(A), cfr(B), cfr(C), cfr(D), optrA, and poxtA were detected by PCR and then sequenced to detect the presence of mutations in the domain V of the 23S rRNA and the ribosomal proteins L3, L4, and L22. Conjugation experiments were conducted using the broth method. The inhibition and eradication of biofilm were evaluated through crystal violet staining, whereas the efflux pump activities were detected by agar dilution. RESULTS: Out of 2128 isolated E. faecalis, 71 (3.34%) were linezolid-resistant isolates in which the MICs of tedizolid and radezolid ranged from 1 to 4 µg/mL and 0.5-1 µg/mL, respectively. The MIC50/MIC90 of tedizolid and radezolid were 4 and 8-fold lower than the linezolid, respectively. Out of 71 resistant isolates, 57 (80.28%) carried optrA, 1 (1.41%) carried cfr, 4 (5.63%) carried optrA and cfr, and 6 (8.45%) carried optrA and cfr(D), with no mutations of 23S rRNA gene and ribosomal proteins L3, L4, and L22. Besides, the transfer rate of the optrA, cfr, and cfr(D) was 17.91%, 0% and 0%, respectively. Radezolid showed more effectiveness in eradicating biofilm (8 × MIC). However, tedizolid was more effective than radezolid and linezolid in inhibiting the biofilm formation (1/4 MIC, 1/8MIC, and 1/16MIC). Additionally, in combination with CCCP, the MICs of radezolid in all linezolid-resistant isolates decreased ≥4-fold. CONCLUSION: Radezolid showed greater antimicrobial activity than tedizolid and linezolid against linezolid-resistant E. faecalis. However, both tedizolid and radezolid showed differential activity on biofilm inhibition, eradication, and efflux pump compared to linezolid. Thus, our study might bring important clinical value in the application of these drugs for resistant pathogenic strains.

19.
Int Immunopharmacol ; 99: 107898, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333359

RESUMO

BACKGROUND: Tuberculosis still threatens human health. We aimed to investigate the T cell immune status and the role of multifunctional T cells in pulmonary tuberculosis patients. METHODS: Thirty active pulmonary tuberculosis (APTB) patients, 30 latent tuberculosis infection (LTBI) patients, 25 cured pulmonary tuberculosis (CPTB) patients and 25 healthy controls (HCs) enrolled in this study. Flow cytometer for detecting T cell phenotype and function. CBA Flex Set was used to measure chemokine. RESULTS: Compared with HCs and LTBI patients, APTB patients had fewer CD4+ T and CD8+ T cells, but the expression of granzyme A, granzyme B and perforin on CD8+ T cells increased. Compared to LTBI and CPTB patients, Mycobacterium tuberculosis-specific CD8+ T cells in APTB patients appeared to be more differentiated CD45RA-CCR7- cells, and there were more multifunctional CD4+ T and CD8+ T cells. Importantly, the frequency of multifunctional CD4+ T cells in the pleural fluid of APTB patients was higher than that of peripheral blood. And the proportion of multifunctional CD4+ T cells expressing the migration receptor CXCR3 in the peripheral blood of APTB patients decreased, while the concentrations of its ligands, chemokine MIG, IP-10 and I-TAC increased significantly in plasma, especially in pleural fluid. CONCLUSIONS: Decreased T lymphocytes in APTB patients may cause compensatory activation of CD8+ T cells. Multifunctional CD4+ T cells in peripheral blood could migrate to the lungs under the action of CXCR3 and associated chemokine. Multifunctional CD4+ T cells and Multifunctional CD8+ T cells were of great significance in monitoring disease treatment.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Subpopulações de Linfócitos T/imunologia , Tuberculose Pulmonar/imunologia , Adulto , Idoso , Citocinas/sangue , Feminino , Granzimas/imunologia , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Perforina/imunologia , Tuberculose Pulmonar/sangue
20.
Eur J Clin Microbiol Infect Dis ; 40(12): 2651-2656, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34097170

RESUMO

Modifying enzyme-CrpP and its variants reduced the MICs of fluoroquinolones in Pseudomonas aeruginosa. This study investigated the dissemination and functional characteristics of CrpP-like in P. aeruginosa from China. The positive rate of crpP-like genes in 228 P. aeruginosa was 25.4% (58/228), and 6 new crpP-like genes were determined. Transformation experiments showed that CrpP-like had a low effect on CIP and LEV susceptibility. The genetic of crpP-positive was diverse. Furthermore, the mean expression level of crpP was no statistical difference between fluoroquinolone-susceptible and -resistant group (P > 0.05). CrpP-like may not play a significant role in fluoroquinolone resistance in P. aeruginosa.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , China , Ciprofloxacina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...